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FINDING 1~E IN~~ESECTION OF A. SET OP a HALF-SPACES IN TIME O(nlo gn)

F. P. Preparata t and D. E. Mullar*

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

~ I 
Abstract

Given a set of a half-spaces in three-dimensional space , vs deve lop an
- i. algor ithm for finding their co~~~n intersection in time 0(nlogn). The

I -~ intersection, if nonempty, is presented as a convex po lyhedron. Th. algori thm

is s~~~arized as follows : (i) the half-spaces are placed in two sets

depending upon whethe r they contain or do not contain the origin ; (ii) the

half-spaces in each of these sets are dualized to points , and the convex

hulls of the dualized sets are obtained in time O(alogn) ; (iii) since the

half-space intersection-- is nonempty if and only if these two convex hulls are

, disjoint , a separating p lane is found , also in time O(alogn) ; (iv) after

- applying a linear spatial t ransformation which maps the s~iparating plane to

infinity , the convex hull of the union of the two transformed convex hulls

is the trans formed intersection of the half-spaces . Since the latter can be

found in time 0(n) , the overall running time of the procedure is O(nlogn) . A

r significant consequence of this result is that a three-variab le linear , or

convex, programming problem can be asymptotically solved fas ter than by the

Simplex algorithm, in the wors t case.
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1. Introduction

To find the coninon intersection of a set of a three-dimensional half-

spaces is an important problem in computational geometry. Perhaps the most

familiar application of this problem occurs in mathematical optimization , V

specifically in three-variable linear and convex programming [1]. In fac t , as

is well-known, a linear prograimetng problem in the variables (x ,y, z) consists

of extremizing a linear objective function of x, y, and z subject to a set

of a linear inequalities in these variables. These inequalities define the

set of the feasible solutions to the problem. It is veil-known that this

set is a convex region of space, which is the intersection of the half-spaces

corresponding to the inequalities; it is also known that the extremuet solution

occurs at one vertex, or extreme point, of the region of the feasible solu-

tions (feasible region). Thus the linear programming problem can be solved

by determining the extreme points of the feasible region, and evaluating the

objective func tion at each of them. The same considerations entirely apply

to convex programming with linear constraints when the convexity of the

objective function is such that its extreme value occurs at an extreme

point of the feasible region.

The most successful method for solving these optimization problems is

the Simplex algorithm ( 1 j.  With three variables, the Simplex algorithm

involves traversing a path on the polyhedral surface which bounds the

feasible region, until the extreinizing vertex is reached . Since the

r 
Simplex algorithm spends t ime 0(n) in moving from one vertex to the next

vertex , and in the worst case it may have to visit 0(n) vertices before
V 
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terminating, we conc lude that its running t ime is 0(n2).
- - 

For the two-variable version of these prob lems , ii. I. Shamos and

Hoey [21 have shown that the intersection of a half-planes can be computed

in time O(nlogn) , thereby obtaining a method for solving the two_variable

• linear programming problem which is faster than the Simplex algori thm in

I the worst-case. Their method is based on the divide-and-conquer technique,

i.e., on finding in time 0(n) the intersection of two polygons , which are

V. 
respectively the common intersections of two sets of approximately n/2

half-planes .

Shamos 13] also suggested that , if one finds a fast algorithm for

intersecting two polyhedra, than this could be used - by the divide-and-

conquer technique - to obtain a fast algorithm for finding the intersection

of a set of half-spaces . In turn, the latter could be applied to the linear 
V

progranming prob lem. In a companion paper (4], we have described an algorithm

for intersecting two polyhedra , whose total number of vertices is a,

in t ime 0(aloga) . This method , if used as a merge technique in a divide-

and-conquer approach , would yield a running time 0(a(logn)2) for finding the

common intersection of a half-spaces. In this paper we show, instead,

that the latter problem can also be solved in time 0(alogn) . Our technique

.- - is crucially based on the polyhedron intersec tion algorithm, but not as a

- merge technique ; rather, it uses it to transform the original problem into

its dual , i.e., that of finding the convex hull of a set of a three-

dimensional points, which is known to be solvable (by a divide-and-conquer

technique) in time O(nlogn) .

The computation model adopted in the preceding algorithms was a

random-access machine using real-number arithmetic . We shall also assume

this model in the future discussion.

‘I 
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p We shall now precisely formulate our problem: Finding the intersection

of a three-dimensional half-spaces consists of finding the solutions to a

I set of a linear inequalities of the form

ai1x + a~2y + a~3z + a~4 ~ 0 (i — l ,...,n) (1)

where x, y, and z are cartesian coordinates of a solution in three-space

V 
and where, for each i, the au ,  a~2, a~3~ a~4 are real numbers which are

not all 0.

For reasons to be explained later , it is more convenient to express the

points in homogeneous coordinates x1, x2, x3, and x4 so that x — x1/x4,

y x2/x4, and z x3/x4. We obtain therefore, the related set of

inequalities:

a~1x1 + a~2x2 + a~3
x3 + a~4x4 

� 0 (i — l,...,n) , (2)

from which we can obtain the solutions to the original set. In fact, the

solutions to (2) form a convex set which may be separated into three disjoint
- subsets each also convex . They are (i) the positive points , having x4

> 0

V which correspond to solutions of (1), (ii) the equatoria l points, having

— 0, and (iii) the negative points having x4 < 0.

I ! The set of solutions to (2) will be described by a system having the

following form:

1. A minimum subset of (2), (i.e., all redundant inequalities will

be deleted) , corresponding to the faces F of a generalized polyhedron
p 

- 
0, to be defined later.

2. A, minimum set V’ of extreme points (x1 x2,x3,x4). The set of

solutions to (2) consists of the linear combinations of the elements of

V ’ with nonnegative coefficients . The three-dimensional nonhomogsnsous

corresp ondents of the elements of V ’ form the set V of vertices of the

generalized polyhedron 0.

- - ~~~~~~~~~~ -~~~~. -~~~~~~~ . ~~~ - _  - - ~~-V. --~~~~~~~_ ~~~~~~~~~~~~~~~~~~~~~~~~ -
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3. A data structure , called a doub ly-connected edge-list (see (4])

1. describing the relation between V and F, that is, th. cycles of edges
- incident on vertices in V and the cycles of edges bordering faces in p.

- 

One advantage to treating solutions to the set (2) of inequalities is that

the extreme points -all lie within the range of the variables , while the

extreme points of (1) may lie at infinity. A second advantage is that ,

as we shall see, the duality between V and F is complete in the case of (2),

and we shall be able to take full advantage of it.

In the next section we shall briefly discuss some geometric motions

which are instrumental to the subsequent developments.

2. Geometrical Preliminaries

As is well-known, there is a convenient interpretation of homogeneous

coordinates in if one views (x1,x2,z3,x4) as coordinates in four -dimensicnal

space E
4 and normalizes them by multiplication by a positive constant

so that x~ + x~ + x~ + x~ — 1, i.e.,  to points on the surface of the
- 

unit hypera phere ~4 with center at the origin. The positive points

lie in what we shall call the positive open hemisphere consisting

of points in S4 with x4 > 0; similarly the negative points lie

L in the nega tive hemisphere and the equatorial points lie in the inter-

section of the hyp.rsphere with the equatoria l hyperplane a~ — 0.

\~\ _______________________________________________

Figure 1. An illustration of the positive and negative sets in two dimensions.
The arrows indicate the half-planes defined by (1) .

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The three-dimensional space containing the solutions to (1) can be

viewed as the hyperplane x4 — 1, which is tangent to S4, and a projection

from the origin establishes a one-to-one correspondence between points of

the positive hemisphere and points of E3. Each of the hyperplanes of (2)

passes through the origin of E4 arid defines a correspoiding half-space;

the common intersection of these half-spaces is a (convex) cone C4 . The

intersection of Ct with S4 is a connected domain which may cross the

equatorial hyperplane; in the latter case, points of Ct n s4 in the positive

hemisphere will be a projected to points in the positive set, whereas the

points of n s4 in the negative hemisphere will be projec ted to a set

of points in the hyperplane x4 — -1, which will in turn map to the negative

set in x4 — 1 by a symmet ry with respect to the origin of E4 (see figure

1(b) for an illustration in one less dimension). This combined set in the

hyperplane x4 — 1 may, thus, consist of two separate unbounded convex sets,

the positive and negative, 35 illustrated two-dimensionally in figure 1(a).

We call this the hyperbolic case. If all points of the solution project

into the positive (or the negative) open hemisphere, the corresponding set

in E3 is bounded and we call this the elliptic case. The parabolic case

occurs when there is a single , but unbounded set in E3, i.e., the case

when equatorial as well as positive (or nega tive) points occur in S4 . In

all th ree cases the sets of points form what we shall call a generalized

convex polyhedron. The elliptic case alone corresponds to a conventional

polyhedron.

-
~ I:

I
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In the sequel we shall make frequent use of an involutory trans formation

from points to planes and vice-versa called dualization . Under dualization

the coordinates ~~~~~~~~~~~~~~~ of a point are reinterpreted as the coefficients

defining a half-space ~1x1 + ~2x2 + ~3x3 + ~4x4 
� 0. Dualization is susceptible

of two intuitive geometric interpretations - one in E4 and one in E3. In

E4 each point on S4 is viewed as the terminus of a (unit) vector applied

to the origin and its dual is the half-space containing this vector whose

boundary hyperplane passes through the origin and is orthogonal to this

vector. Conversely , each half-space through the origin dualizes into the

corresponding vector. In E3 a positive point at distance L from the origin —

is mapped into a half-space containing the origin whose bounda ry plane is

at distance IlL f rom the or~ gin in a direction opposite to the point. If

the point is negative, the complementary half-space is obtained with the same

boundary. Conversely, any half-space whose boundary plane does not contain

t the origin has a point as its dual. This point is interpreted as being

positive or negative depending upon whether the half-space contains the

origin.

After dualizing the system of inequalities we shall need to apply various

algorithms which construct the convex hull of a set of points, and follow this

operation by an inverse dualization. Since the convex hull algorithms in their

published version [5] apply to the conventional or elliptic case, we shall

j
~ 

j find it convenient to firs t apply an invertible linear trans formation of
I

coordinates to (2) in E • This transformation will have the effect in E

of moving the origin to a selected point and hence will enable us to reduce

I
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the dual system to the elliptic case as desired. The transformation will

be described by a nonsiagular 4 x 4 postmultiplicative matrix T. It is

desirable, however, in order to avoid unnecessary coordinate manipulations,

to restrict ourselves to linear transfo rmations of E4 which map S4 to itself.

These t rans fo rmations are readily characterized . Letting the row vector {

denote a point on S
4 , we know tha t ~~~~~~~ — l’~~ ; the image rr of ~ must be

on s4 , whence j T(~ T) ’ — j TT’~~’ — l. Since j  is arbitrary on ~4 , the latter

holds if and only if T T ’  — I4~ the 4 x 4 identity matrix, i.e., T 1 
— T ’.

This is the characteristic property of rotations: thus we shall only coniide:

rotations of E4 . It is worth noticing that rotations cosmnite with dualization ,

that is , the dual of the image (under rotation) of a point coincides wi th

the image of the dual of that point.

3. Finding the Intersection

We shall now rewrite (2) in matrix form

A ’ ~~~ 0 (3)

where A — Ilaij is an n X 4 matrix. Let A+ , A0, and A _ be the matrices

formed from the rows of A for which aj4 > 0 , a~~ — 0, and &
j4 

< 0

respectively. In a later discussion we shall show that ,except in

degenerate cases which can be reduced to a problem of lower dimensionality,

it is possible to find a rotation of A which eliminates A0. Therefore ,

we assume tha t in (3) such a rotation has already been made and that either

aj 4 > 0 or aj4 < 0 for each i.

is the transpose of

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  --  -- V V  - -~~~
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Each row (aii,ai2,aj3iaj4) of A+ represents a plane in E
3 (or , equivalently,

4a hyperplane through the origin in E ). We now dualize each such plane, i.e.,

we construct a point (aj i/aj4,aj 2/a i4,a~3/a~4) in and apply the

algorithm of [5] to find the convex hull a’+ of these points: notice

tha t the algorithm is directly applicable because each point has finite

coordinates. The same procedure is then used to construct a convex

polyhedron from the matrix A_ . We may now apply to the two three-

dimensional polyhedra and an algorithm, described in [41, which

determines whether the two polyhedra intersect and , if so , finds the inter-

section , and if not, finds a separating plane. Actually if ~ ~
(D) has an

interior (i.e., nonzero volume), we need not explicitly construct it, since

in this case the set of inequalities (3) is inconsistent and has no solution.

In fact, by simple reasoning on duality, any point ~ (u1,u2,u3) in the

interior of ~(D) must satisfy U
1~~1 + U

2
x

2 + u~x3 + x4 > 0 when x a (x1,x2,x3,x4)

is any solution of (3). If u is also in the interior of then it must

satisfy -u1x 1 - u2x2 
- u3x3 - x4 > 0 as well, so we conclude that (3) has no

solution.

If c7(D) 
~ Q~(D) is nonempty but has no interior , the problem reduces to

one of lower dimensionality to be discussed in Section 4.

Finally suppose tha t ~~~ (D) and ~ (D) do not intersect. In this case we
V 

- -  
find a separating plane by the method described in (4], and let

lb + 
~2 ’ + p3z + p4 

— 0 be this plane, with the signs of the coefficients

so chosen that for any point (a ,b ,c) in we have p1a + p2b + p3c + p4 > 0.

2 The letter “D” as an apex is to remind us that we are dealing with the
convex hull of the dual set of points.

~~~V~~T~~~~ iiT1V V~~~~~  ±1V~J~
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The separating plane just found may be extended to a hyperplans
- p1x1 + + p3x3 + p4x4 

— 0 through the origin, whose normal. in ~4 is the

vector (p 1,p 2 ,p 3 ,p4) .  We now wish to rotate coordinates in E4 so that this

vector points toward the origin of E3. In other word s , we wish

to find a rotation R such that (p 1,p 2,p3 ,p4)R — (0 ,0 ,0 ,K), where K is

a positive number (actually K — + p~ + p~ + pt) . A sui table rotation

is easily constructed as a product R 1R2R 3, where each R 1 causes Pt to go

to 0. For *~~~ple, we may take

p4 1./p 2
1 + p~ 0 0 +

0 1 0 0R1~~ 0 0 1 0

-
~i”~21 + 0 0 +

The elements of the 4 X 4 matrix R can be computed in time bounded by a

constant using the operations of arithmetic inc luding square root.

- 
V 

We claim that the fourth column of the matrix AR consists entirely of

- positive entries. In fact, system (3) can be rewritten as

- Ax ’ — A(RR~~)x ’ — ARR ’x ’ — AR (,~R)’ � 0. (3’)

- 1 Since the point 2 — (p 1,p~ ,p3 ,p4) satisfies a~1~1 + ai2p2 + a~~p3 + a~4p4 >0

- ~~
-- fc~ each t , the image of z under the rotation,which is (0,0,0,K),

- .  satisfies a corresponding set of strict inequalities using the rows of

AR. In each of these inequalities the only nonzero term is the positive

cons tant K multip lied by the fourth entry in the corresp onding row of AR,

thereby establishing the claim.

! ‘~
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-- There is no need, however, to construct AR, since it may contain

irrelevant rows which we want to suppress. Instead , for each vertex

(aii /aj4,aj 2/ai4,ai3/aj4) of (2(D) we cons truct a row (aii,a~2,
ai3,aj4) of

- - 

a new matrix A~
m) whose rows form a subset of the rows of A+. Similarly,

- for each vertex of a’~~ we find - the corresponding row in A~ and from these

- 
- 

rows form a new matrix Aim) .

Let A* — A(m) R and A* — A(m) R; the set of inequalities

(4)

is equivalent to AR~’ � 0, with all irrelevant inequalities deleted .

- 
Since (4) is satisfied by (0 ,0,0,1), the origin in E3, conceptually the

intersection of the original n half-spaces can be found by: (i) dualizing the

planes corresponding to the rows of [A~,A*J, (ii) finding the convex hull
- of the set of points thus obtained, and (iii) dualizing back the convex hull.

However , this sequence of operations can be considerably simplified. The

duals of the planes corresponding to the rows of A~
m) and A (m) are already

available as the vertices of the polyhedra and resp ectively . Thus ,

-

. 
to obtain the analogous polyhedra ~~ (D) and ~~ (D) for A~ and A* respectively,

- we rotate the polyhedra and ~7(D) (which lie in the x4 - 1 hyperplane)

by ft and then project them th rou gh the origin of E4 back to the hyperplane

- 
x4 

— 1. In practice , this means multiplying the coordinates of each of

1. the rotated vertices by a number which makes its fourth coordinate 1.

The two polyhedra ~~~ and ~~ (D) are disjoint because they are
- ;  ~~~ !. 

- 

4separated by a hyperplane through the origin of E normal to the ft- trans form

of the vector (0,0,0,1). We therefore may cons truct the convex hull of

- - 
- the union ~~ (D) 

~ ~~ (D) by a single application of the “mci se ” portion

iii
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of the algorithm of (5] in time proportional to the total number of

• vertices in the two polyhedra . Tat us call this resulting polyhedron

sow, the dual Q* of the po lyhedron represents the set of

• solution.s to the system of inequalities

a~1x + a ~2y + a ~~z + a ~4 � 0  (i— l ,...,n) (1’)

j where the coefficients ati are the elements of the matrix A* — AR , and we

recall that all the coefficients at4 are positive. We therefore apply the

1 inverse ro tation R~~ to the vertices and faces of Q*. Now~~~ lies in

the hyperp lane x4 — 1, so the four-dimensional rotation ft 1 is applied

to vertices of 0* of the, form (vt ,v!,1, 1). The resulti ng vertices

I (v1,v2 v3,v4) must be renormalized if V
4
. # 0, and this is don. by

• multiplying each of the coordinates by the positive constant 1/ tv4 I.
- The result of this rotation and renormalization is a set of vertices

and associated faces which we can represent by a doubly-connected edge-

- - 
list and which we shall call a generalized polyhedron a’. The vertices of

I 

this generalized polyhedro n with fourth coordinate equal to 1 are the

extreme points of the intersection of the half-spaces .

In the beginning of this discussion it was stated that an initial rotation

- 
IL0 of coordinates could be found which would make each entry a~4 in the

four th column of the matrix A. different from 0. We shall now describe how

¼ 
_ _ _ _ _  

_ _ _ _ _ _ _

~~~-
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ft0 is obtained As before , we define A0 to be the matrix composed of rows

- 
from A having a~4 — 0. Inequalities of the set (1) corresponding to these

rows appear as

I - .  a~1x + a~2y + ai3z � 0 . (1W )

We seek to find a point u — (u 1,u2,u3) in E3 which strictly satisfies all

these inequalities. Notice that the set of inequalities (1”) defines a
3 3 —

convex cone C’ in ft , whose vertex is the origin. Except in degenerate

cases , intersects either one of planes z — 1 and z — -1, since it cannot

be contained in the region -l � z � +1. Hence , if a point u exists, it can

be found as follows. Let z — 1 in (1” ) and , using an algorithm due to

Sbamos and Hoey [2] for finding in time 0(nlogn) the intersection of n

- 
half-planes, find the polygon of solutions . If no such polygon exists,

- then set z — -l and repeat the process. In one case or the other there

* will be a polygon P from which we can choose j~ as one of its interior points .

Now we augment u — (u 1,u2, U3) to form a point y — (u1,u2, u3,M) in

- - 
taking N > 0. Clearly , .y strictly satisfies all the inequalities in

~

‘ 1.! A~~ ~ 0. As we saw in the derivation of R , we can construct a rotation

ft0 such tha t yR
0 — (0,0,0,K0), and this rotation has the property that all

entries in the fourth column of A,~R 0 are positive.

1 The rotation ft 0 can be made to differ very little from the identity

-. 
trans formation by taking N vary large . Thus , we take N large enough so

- !, tha t no fourth column entries in A4 or A change sign when the ro tation ft 0
- is performed. Hence all entries in the fourth column of AR0 are nonzero.

-i,

I
I 
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As we noticed construction of u can be done in time 0(nlogn) ; the 
V

construction of a rotation L~, can be done in Constant time, as previous ly

discussed in a similar situation.

Lu conclusion we will replace the original set of inequalities (3) by

� 0. (3”)

To si arize the preceding discussion , the intersection of a half-spaces,
( expressed by (3) ,can be obtained as follows .

Step 1: Find a point u in the interior of the set of solutions to (1.”)

and const ru ct a corres ponding rotation ft0. Replace A by AR0
[This can be done in t ime O(nlogn) using the half-plane

intersection algorithm (2] .)

- 

- -  - 

St.p 2: Find the convex hull a~~ of the set of points ~~~~~~~~~~~~~~~~~~~~~
for all i such that a~4 > 0. Find the convex hull a~(T~ of the set

of points (aji/aj4,ai2/ai4,a~~/aj4) for all i such that a~4 < 0.

[This can be done in time 0(nlogn) by using the convex hull

algorithm described in (5] .]

S tep 3: Using the algorithm for intersecting po lyhedra [4] , test if

~ ~ (D) has an interior. If so , the half-space intersection

is empty ; if not , find a separating plane p1x + p2y + p3z + p4 — 0.

[This can be done in time 0(nlogn) , according to the results

reported in (4].)

Step 4: Find a rotation R of E4 so that the separating plane is mapped to

the plane at infinity [this can be don. in constant time). Find
the ft-trans forms of the po lyhedra and and project them

through the origin back to the x4 — 1 hyperplane. (This requires

time 0(a) .] Tat a~
(D) and ~~~ be the resul ting po lyhedra.

-- -- - V. -
I.. - - -
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Step 5: Find the convex-hull 0~a’) of the union of the two polyhedra

a~
(D) and ~~~~ [This is done La time 0(n) using the

algorithm of ( 5 1 . 1

Step 6: Compute the R R~~-trans fOtm of the vertices and faces of the

dual 0* of 0*(D) Then renormalize the transformed vertices

to obtain 0, the generalized polyhedron which forms the

intersection of the given half-spaces. ( this step also

requires time 0(n). ]

In conclus ion, we see that the preceding algorithm runs in time

0(nlogn) , Steps 1, 2 , and 3 being the limiting ones.

To eliminate solutions to (2) corresponding to negative points , one can

augment the set (2) with the inequality x4 
� 0 before applying the algorithm .

The remaining positive points projec t to solutions to the set (1) , and if

there are equatorial points which are extreme points they should be

retained to facilitate the description of the set of solutions .

4. Degenerate Cases - V

One degenerate case,which may arise in Step 3 of the main algorithm,

occurs when the intersection ~ 0(D) is nonempty but has no interior,

i.e., has zero volume. In this case , the algori thm described in (4] may be

used to find a point ~ — (q 1,q 21q3) in ~ a (D) , If x — (x1,z2, x3,z4)

is any solution to (3), then both q1x1 + q2x2 + q3x3 + x4 ~ 0 and

-q1x1 
- q2x2 - q3x3 

- x4 
� 0 must be satisfied. Hence, the set of solutions

1 :  to (3) ii constrained to the hyperplane q1z1 + q2x2 + q3x3 + x4 — 0. Thus ,

we construct a rotation ft such tha t (q1,q2,q3, l)R* — (0 , 0,0 ,K*),  where

is a positive cons tant.
- 

[V~1

I
• 

_ _ _ _ _ _ _  
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Now, after ft* is applied , the set of inequalities AR*xt � 0 imply

x4 — 0, so the four th column of AR* is superfluous. Thus , the set of

inequalities AR*x I 
~ 0 may be replaced by a set having the form (1’)

whose algorithmic solution has already been described . Hence, to obtain the

solution to (2) one need only rotate the result by (R*) _ l
.

Another degenerate case could arise in Step 1 of the main algorithm

- • 

I when there is no interior point u to the set of solutions to (1’), i.e.

to A~~’ � 0. In this case , while seeking such an interior point , we either

discover (a) that while no interior point exists there is a point

v a (v1,v2, v3),  with v3 — 1 or v3 
— -1 which satisfies (1’), or (b) that

the cone C3 fails to intersect either plane z — +1 or z — -1.
In case (a) the point v must lie in a plane through the origin which

contains all solutions to (1’). Suppose , this plane has the equation

m1x + m2y + m3z 
— 0. We then choose R* so that (m 1,m2,m3,O)R* — (0,0,O,K*)

for some positive and solve as in the previous case. The equation of

F the desired plane is obtained as a result of applying the algorithm due to

Shamos and Roey [2 1.

- I In case (b), the inequalities (1’) imply that z — 0. Hence, the third

- 
column of A is superfluous. The set of inequalities Ax ’ ~ 0, given in (3) ,

- may be replaced by a set of the form (1’) by deleting the third column.

The solution to (1’) is ob tained as before.

11 -

11
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